变频器维修-工控

    文章全为原创,多为维修笔记,旨在技术交流,互相提高。以变频维修及其它工控类文章为主,间或放进些诗歌散文,以起到阅读中的调适作用,也是原创。欢迎

转载,欢迎留言探讨有关工控的技术问题!欢迎赐教与指正!转载最好注明文章出处标以转载字样,以期规范转载行为。所有文章大家随便看,不搞什么须登陆,须回复才能打开的设置!这是我的公告。

                                                                                   旷野之雪

                                                                                   2008.5.16



运放原理新解(之一)
旷野之雪 发表于:2016/11/13 15:54:14
标签(TAG):变频器故障检修

运放原理新解(之一)

——听咸老师说电子电路系列之一

集成运算放大器,简称运放。三端元件(双端输入、单端输出的电路结构),理想三极管,高增益直流放大器。

理想运算放大器(有时简称运放)的特点如下:

(1)极大的输入电阻

高输入阻抗,输入端流入电流近于0,几乎不取用信号源电流,近于电压控制特性,从而导出“虚断”概念;

(2)极小的输出电阻

具有(在负载能力以内)不挑负载,适应任意负载的特性。后级负载电路的阻抗大小不会影响到输出电压。

(3)无穷大的电压放大倍数(可达百万或千万倍)。这就决定了:在一定供电电压条件下,放大器仅能工作闭环(负反馈)模式下,且实际的放大倍数是有限的;开环模式即为比较器状态,输出为高、低电平二态。

在闭环(有限放大倍数)状态下,放大器的脾性是随机比较两输入端的电位高低,不等时输出级即时做出调整动作,放大的最后目的,是使两输入端电位相等(其差为0V),从而导出“虚短”概念。

其实,在放大过程中,是在进行着“放大不离比较,比较不离放大”动态平衡的调整。

整个模拟电路教程,在大学或高职高专的正统教学规程上,其内容相当庞大,而学习难度尤高,尤其牵涉太多的高等数字运算,因而学习运算电路,被相当多的学子视为畏途,更有人将模拟电路称之为“魔电”,越学越晕,导致不能学以致用。以我本人几十年来对电子电路的原理掌握和实践应用经验为据,写就该章。就我看来,整个运放电路的应用,如果用3个课时来解决掉,掌握原理和检修方法,一步到位修运放电路,是完全可以实现的。

一、提出创意原理符号和简要定义

   集成运算放大器内部含输入级、中间放大器和输出级电路,从维修角度来讲,深究内部电路构成是不必要的(那是器件设计者应该做的事)。我们只要搞清其基本电路原理、引脚功能和故障表现,就可以了。但是,单就运放符号来分析输入、输出级的相互变化,剖析工作原理是有难度的,我的创意是在讲述原理时,将输出级电路搬到经典运放符号的外部,再进而确定输入端和输出级两只管子的对应关系,如此一来,“运放电路原理之难”的面纱将被揭开,掌握其电路原理,即成为轻松愉快的一件事儿了。

图1-1 常规运放符号与创意原理符号

从常规运放符号看,除了输入、输出3个端子,正常工作时还需供电两个端子,这样一来,运放电路其实是个五端元件了。输入端+、-的标记是依据两输入端与OUT端相互影响的电压变化趋势来规定的,若令IN+端接地(或施加固定不变之电压),信号从IN-端进入,输入电压升高时,输出电压是降低的,呈反相关系,则为反相放大器;反之,当信号从IN+端进入,输入电压与输出电压变化则是同步的,则为同相放大器。

将三角形内部的输出级搬出来,即成为图1-1中的b电路了。运放电路的典型供电电压为±15V,其输出级电路为NPN和PNP三极管构成的电压互补式放大器,Q1的c极接+15V,Q2的c极接-15V。±15V电源的公共地(+15V电源的负端)即为信号地(即0V基准),此后所指输入电压、输出电压的高低,均指针对信号地而言。为了图面简洁,将前级电路的供电省略掉。以下原理分析即据b图而为之。

我们先来从比较特性来出发,规定输入端IN+、IN-与输出级Q1、Q2的对应关系:

  1. IN+对应Q1,当IN+> IN-时,Q1导通,使OUT输出电压往+15V上靠拢;
  2. IN-对应Q2,当IN-> IN+时,Q2导通,使OUT输出电压往-15V上靠拢。

当运放电路处于开环状态时,因其放大倍数无穷大之故,只要IN-和 IN+之间略有电位差,其输出

电压即要么接近+15V,要么接近-15V。输出只有高、低电平,而无其它结果,这说明开环时,运放变身为比较器身份,而出离放大器区域了。

二、同相放大器

接上述。运放电路被当作运算放大器应用时,必须工作于闭环状态——将OUT端输出电压引回IN-端构成负反馈通路,如果OUT端与IN-端直接短接,即将输出电压信号全部地引回至反相输入端,则放大器将失掉电压放大能力,处于电压跟随器的工作状态。

1、电路跟随器

图1-2 电压跟随器的电路形式之一

以图1-2中的a电路为例,以输入、输入的原始状态对地电压为0V为静态工作点,分析电压跟随器电路的工作原理。

当放大器同相输入端由原始状态跃升为1V输入信号电压时,因输入端IN+> IN-,Q1开始导通,使输出端向+15V靠近;因输出端反馈信号全部馈回IN-反相输入端的缘故,由放大器脾性可知,至IN-端电压也为1V,两输入端电压相等时,电路进入平衡状态;当IN+端输入负电压信号时,此时因IN-> IN+,Q2导通,使输出电压向-15V靠近,直至两输入端电压相等时,电路进行平衡状态。由此推知,当IN+端输入电源范围以内的电压信号,其输出端也必然输出相应的相等的输出电压。

由电压跟随器电路,可以找到该电路的两个基本特点:

(1)、闭环状态下,当电路达到平衡状态后(实际上,电路的控制速度非常之快,当我们下笔测量时,调整过程已经结束),两输入端电压相等,即其电压差为0V;

(2)、针对电压跟随器这个“特型电路”,其三端——两个输入端和输出端电压——是完全相等的。若有不等,即电路是坏掉的。

上述(1)即教科书中说到的“虚短”概念,适用于一切由运放构成的放大器电路。

那么既然输入、输出电压是完全相等的(即无电压放大作用),添加该级放大器岂不是无用的?答案是否定的。电压跟随器是一个阻抗变换器,变输入高阻为低阻输出,提高带载能力,置身于前、后级电路之间,起到隔离和缓冲作用。如MCU信号输出端口输出2V电压信号时,因拉电流能力约1mA左右,无法直接驱动发光二极管,接入电压跟随器后,同样的电压幅度,则具备了驱动发光二极管的能力。

图1-3 电压跟随器的电路形式之一

网络上有句流行语:“别以为换了个马甲,就不认识你了”。图1-2中的b、c电路和图1-3中的三种电路,虽然添加了部分元件,但从本质上看,仍然是电路跟随器电路。

图1-2中的b、c电路,虽然添加了R1、R2等偏置元件,但由于两输入端“虚断”的缘故,偏置元件中流过的电流近乎为零,其电压降也零,和a电路是没有区别的,只是设计者的考虑不同(有些是考虑到偏置电流的细微影响)罢了。

图1-3中的a电路,添加了负载电阻R3,减弱了电路空载时输出波动,起到稳定输出及消噪的作用,电路仍为电压跟随器;图1-3中的b电路,其(1)输出端串联了D1二极管再输出,起到选择输出电压极性的作用,后级电路只要正电压,不要负压。其(2)输出端串联了R2电阻,起到输出级限流保护作用,避免芯片过载烧毁;图1-3中的c电路,电压反馈信号反应了流经R2电流的大小,当输入电压为稳定值时,输出电流也是恒定的,又称为恒流源电路。而从输入、输出电压关系看,仍然为电压跟随器电路。其电路的优点,是不用设计甚至不用考虑三极管Q1的工作点问题(三极管完全是被动干活的,主动调节器件是运放)。

对放大器电路来说,如何确定输入端和输出端,也是确定电路类型的前提。如图1-2和图1-3电路中:

(1)输入端

因为流经输入电阻的电流为零,电阻两端无电压降,输入电阻的大小和有无,不会影响到输出结果,输入电阻R1的左端和右端,或近似认为运放的两个输入端,都为信号输入端均可,此点电压值即为输入电压值。

(2)输出端

运放本身的输出端,不一定就是信号输出端。原则是:反馈信号取自何处,何处即是输出端。如图1-3中的b电路,D1负端和R2的右端才是信号输出端,该点电压是完全跟踪于输入电压的。至于运放本身输出端到底为何电压值,是与二极管的导通压降和后级负载电流大小有关系的,是变量。而D1负端和R2的右端的输出电压值,则是定量,永远与输入信号幅值是相等的。

关于电路跟随器电路的故障检修,在找准输入、输出端的情况下,只有一条原则:测量三端电压不等,即为故障状态,反之则为正常状态。更为具体的检测方法,请见下文。

2、同相放大器

如果将输出电压按一定比例衰减以后,再馈入反相输入端,电路则具有了电压放大作用。因信号是从同相输入端输入,称为同相放大器。

为了便于说明原理,以图1-4中的a电路(仍将输出级搬于外部)为例。

图1-4 同相放大器

将输出电压经R2、R3分压衰减后,再送入反相输入端,即构成同相放大器电路。当同相输入端输入-3V电压信号,Q2导通,使输出电压往-15V靠近,由R2、R3电阻值可知,当输出端电压值为-6V时,放大器的反相输入端,即R2、R3分压点变为-3V,两输入端电压相等,电路进入平衡状态。改变R2、R3的阻值比例,可灵活改变电路的电压放大倍数。其电压放大倍数=1+(R2/R3)。电路中R1为输入电阻,其值大小不影响放大倍数,R2、R3则成为不可或缺的关键器件。

运放需要与外围分压电路相互作用,构成放大器电路,至此,一个问题浮上水面:在放大器进行的放大活动中,是运放唱主角还是电阻唱主角呢?

是电阻串联分压电路在唱主角!运放仅仅是个配角,尽职尽力地自动配合分压电路,完成其分压意愿——使反相输入端电压等同于输入信号电压。当输入电压变化时,其输出级Q1、Q2工作于可变电阻区,进行随机性的电压调整,以满足分压电路的分压要求。

图1-4中的b电路,在输出回路中串接了R4限流电阻,其R4右端为信号输出端,小有改变,仍为同相放大器电路。该电路中,只在R2有一定电阻值,电路的电压放大倍数即会大于1;当R2阻值小至导线时,电路变身为电压跟随器电路。因而做为同相放大器,只有两种电路形式,一为同相放大器,一为电压跟随器(最小电压放大倍数为1),无法作为衰减器应用。

同相放大器(适用于运放构成的任意放大器电路)故障检修要点:

(1)两输入端电压值相等,即电压差为零,是运放反馈闭环正常,处于正常放大状态的标志之一。如图1-5电路的a电路为正常工作状态。

但要注意其输出电压值取决于R2、R3的电阻比例,当电阻变值时(这也是经常遇到的故障现象),会导致输出结果变坏,但起码运放电路本身是好的。此时的判断方法时,先看R2、R3标称值,再测量反相输入端和输出端的电压值进行落实,如图1-5电路的a电路,简易判别方法是:已知输入电压为3V,即R3两端电压降为3V,因串联回路流过的是同一个电流(不必考虑其大小),则R2两端电压即符合3V/10k的比例关系,如本例,当R2取值也为10k时,说明电路为2倍压同相放大器,将VR3+VR2=输出电压,若符合,外围电路是好的,若不符合,是R2、R3有变值现象。

图1-5 同相放大器故障检修示例

(2)当两输入端电压不等时,该级电路已经处于异常的故障状态。这需要进一步确定是运放本身还是外围偏置电路的故障。

(a)暂把运放电路当作电压比较器,按比较器的电路规则进行检测。若符合比较器规则,如图1-5中的b电路,同相端电压高于反相端,输出端电压为13.8V,说明运放芯片是好的,故障出在偏置电路。稍加分析可知,是反馈电阻R2断路,放大器的闭环条件被破坏,从而使放大器变身为比较器的原因。

(b)若电路连比较器的原则也不符合,如图1-5中的c电路所示,输入、输出电平变化连比较器的逻辑关系也不成立(电路完全不讲理了),则与外围电路不相干,可以直接判断是运放芯片坏掉,直接换运放芯片即可。

这样,对运放工作状态好坏的判断,变得有规律可循(搭下表笔即可得出确凿的判断结果),从而使检测具有了可操作性。

二、反相放大器结构和定义

如果输入信号进入反相输入端,并且是工作于闭环状态的,其输入、输出电压信号的变化趋势是相反的,即构成反相放大器电路。如图1-6所示,仍然采用创意原理符号绘图。后文中为了图形简洁,对于反相放大器,有时省略掉同相输入端偏置电路,而使同相输入端直接接地。

图1-6 反相放大器的三种基本电路形式

反相放大器,系同相端接地(或经偏置电阻接地),输入信号从反相输入端进入的电路结构。由两输入端“虚短”关系,(因同相端接地之缘故)又可导出“虚地”概念,而此概念仅指反相放大器而言。因设计者的考虑不同,其同相端输入端有直接接地者,也有添加偏置电阻R3而接地者,而在其分析电路原理和故障检修时并无不同。

显然,因其同相输入端接地,放大器的最后控制目的,是在放大区域内,无论输入为何信号,在输出级动态调整下,总是使反相输入端变为0V地电平。上图中,R1为输入电阻,R2为反馈电阻,电路的电压放大倍数=R2/R3。

就此,可得出反相放大器正常工作状态的根本特征:

(1)两个输入端对地均为0V。

(2)输入、输入信号电压呈反向变化趋势,大小取决于R1、R2的比例关系。

如果需要分析或得出检测判断,首先要确定图1-6中电路,何点是信号输入端?

因反相放大器的“虚地”特性,运放器件本身的两个输入端为0V地电平,并不随输入信号电压变化而变化(或仅为瞬态变化,测量中极难捕捉),显然,输入电阻R1右端并非信号输入端,而其左端才是信号输入端,故R2/R1=-VOUT/VIN-(R1左端输入电压)。

或可这样认为:如上图电路中,R1两端即为输入电压,R2两端为反向的输出电压,对该电路电压放大倍数及好坏,仅需用表笔搭上两搭,就一清二楚了——VR1两端电压为输入电压;VR2两端电压为反向的输出电压。

1、反相放大器工作原理

由输入电阻的反馈电阻的比例不同,反相放大器又可分为三种类型的电路。即:

(1)反相器。反馈电阻和输入电阻的比例关系为:R2=R1。

(2)反相放大器。反馈电阻和输入电阻的比例关系为:R2>R1。

(3)反相衰减器。反馈电阻和输入电阻的比例关系为:R2<R1。

其中反相器又称倒相器电路,因输出、输出变化趋势相反、其绝对值相等而得名;反相放大器,具有信号反相和放大双重作用;反相衰减器,具有信号反相和衰减双重作用。三种电路均有普遍应用。

分析其电路原理的出发点,仍为电阻串联分压唱主角,运放器件为配角。或可从输入电流角度进行分析亦可。如上图,将其偏置电路单独画出,更能说明问题。

图1-7反相放大器三种偏置电路

上图a电路,R1、R2组成串联分压电路,信号极性决定了信号电流方向,向从下往下的,即从信号端流向输出端。因流入R1、R2的为同一电流,R1=R2,分压点为0V,故可推知OUT端必然为-1V。输出端的-1V(分压点的0V)是由输出级Q2的导通程度所决定的,是据输入信号自行调整的。

也可换个角度进行分析。因流入R1的信号电流为+1mA,须令流经R2的电流为-1mA,才能使其分压点为0V。而运放器件的任务,就是自动控制R2两端电压(或控制R2中流经与R1等量的反向电流),使其反相输入端变为0V(反相放大器的控制目标)而已。

由此推知,当R2>R1时,为得出流经R2电流仍为R1等量的反向电流,而OUT端必然要调整输出为-3V;当R2<R1时,为得出流经R2电流仍为R1等量的反向电流,而OUT端必然要调整输出为-0.5V。

整个运放电路,说穿了,嗨,就是玩转着电阻串联分压的一个游戏。只要掌握了电阻串联分压电路的分析能力,也就是找到了分析运放电路原理的金钥匙。

2、反相放大器故障检修

(1)反相放大器的正常工作状态。

即符合两个根本特征:

a、两个输入端对地均为0V。

b、输入、输入信号电压呈反向变化趋势,大小取决于R1、R2的比例关系。

不为此,即故障状态。

(2)检修同相放大器的原则仍然适用于反相放大器。

a、“虚地”原则不符合后,先按比较器原则检测,符合之,运放器件好,外围元件故障。

b、不符合比较器原则,则运放器件坏。

中华工控网 http://www.gkong.com/ 原创文章,转载请注明出处。

咸庆信

2016年11月13日


阅读(1157) 评论()



回复:运放原理新解(之一)
(匿名游客) 发表于:2017/1/10 10:05:15

谢谢咸老师,茅塞顿开啊!. . . .滞回比较器和精密整流再讲一下就.. ..更好了。


引用 | 举报回复




 
  日历 


  登录 


  我的分类  


  最新日志 


  最新评论  
 

  Blog统计 
 

博客名称:变频器维修-工控 日志总数:388 评论数量:2068 访问次数:1907895 建立时间::2008年05月15日

  友情链接 


  给我留言


  搜索 

      XML RSS 2.0
 

中华工控网 | 联系我们 | 工控论坛首页 | 工控博客首页 | 博客注册 | 博客登陆

工控博客管理联系邮箱:工控博客服务邮箱

中华工控网 © Copyright 2013. All rights reserved.